
Friday, March 12, 2021

Using the Nix process management framework as an
infrastructure deployment solution for Disnix

As explained in many previous blog posts, I have developed Disnix as a solution for
automating the deployment of service-oriented systems -- it deploys heterogeneous
systems, that consist of many different kinds of components (such as web
applications, web services, databases and processes) to networks of machines.

The deployment models for Disnix are typically not fully self-contained. Foremost,
a precondition that must be met before a service-oriented system can be deployed,
is that all target machines in the network require the presence of Nix package
manager, Disnix, and a remote connectivity service (e.g. SSH).

For multi-user Disnix installations, in which the user does not have super-user
privileges, the Disnix service is required to carry out deployment operations on
behalf of a user.

Moreover, the services in the services model typically need to be managed by other
services, called containers in Disnix terminology (not to be confused with Linux
containers).

Examples of container services are:

The MySQL DBMS container can manage multiple databases deployed by
Disnix.
The Apache Tomcat servlet container can manage multiple Java web
applications deployed by Disnix.
systemd can act as a container that manages multiple systemd units deployed
by Disnix.

Managing the life-cycles of services in containers (such as activating or
deactivating them) is done by a companion tool called Dysnomia.

In addition to Disnix, these container services also typically need to be deployed in
advance to the target machines in the network.

The problem domain that Disnix works in is called service deployment, whereas
the deployment of machines (bare metal or virtual machines) and the container
services is called infrastructure deployment.

https://sandervanderburg.blogspot.com/2011/02/disnix-toolset-for-distributed.html
https://sandervanderburg.blogspot.com/2012/11/an-alternative-explaination-of-nix.html
https://en.wikipedia.org/wiki/List_of_Linux_containers
https://sandervanderburg.blogspot.com/2015/07/deploying-state-with-disnix.html

Disnix can be complemented with a variety of infrastructure deployment solutions:

NixOps can deploy networks of NixOS machines, both physical and virtual
machines (in the cloud), such as Amazon EC2.

As part of a NixOS configuration, the Disnix service can be deployed that
facilitates multi-user installations. The Dysnomia NixOS module can expose
all relevant container services installed by NixOS as container deployment
targets.
disnixos-deploy-network is a tool that is included with the DisnixOS
extension toolset. Since services in Disnix can be any kind of deployment
unit, it is also possible to deploy an entire NixOS configuration as a service.
This tool is mostly developed for demonstration purposes.

A limitation of this tool is that it cannot instantiate virtual machines and
bootstrap Disnix.
Disnix itself. The above solutions are all NixOS-based, a software
distribution that is Linux-based and fully managed by the Nix package
manager.

Although NixOS is very powerful, it has two drawbacks for Disnix:

NixOS uses the NixOS module system for configuring system aspects.
It is very powerful but you can only deploy one instance of a system
service -- Disnix can also work with multiple container instances of the
same type on a machine.
Services in NixOS cannot be deployed to other kinds software
distributions: conventional Linux distributions, and other operating
systems, such as macOS and FreeBSD.

To overcome these limitations, Disnix can also be used as a container
deployment solution on any operating system that is capable of running Nix
and Disnix. Services deployed by Disnix can automatically be exposed as
container providers.

Similar to disnix-deploy-network, a limitation of this approach is that it
cannot be used to bootstrap Disnix.

Last year, I have also added a new major feature to Disnix making it possible to
deploy both application and container services in the same Disnix deployment
models, minimizing the infrastructure deployment problem -- the only requirement
is to have machines with Nix, Disnix, and a remote connectivity service (such as
SSH) pre-installed on them.

Although this integrated feature is quite convenient, in particular for test setups, a

https://sandervanderburg.blogspot.com/2015/03/on-nixops-disnix-service-deployment-and.html
https://sandervanderburg.blogspot.com/2011/01/nixos-purely-functional-linux.html
http://aws.amazon.com/ec2
https://sandervanderburg.blogspot.com/2016/06/deploying-containers-with-disnix-as.html
https://sandervanderburg.blogspot.com/2020/04/deploying-container-and-application.html

separated infrastructure deployment process (that includes container services) still
makes sense in many scenarios:

The infrastructure parts and service parts can be managed by different people
with different specializations. For example, configuring and tuning an
application server is a different responsibility than developing a Java web
application.
The service parts typically change more frequently than the infrastructure
parts. As a result, they typically have different kinds of update cycles.
The infrastructure components can typically be reused between projects (e.g.
many systems use a database backend such as PostgreSQL or MySQL),
whereas the service components are typically very project specific.

I also realized that my other project: the Nix process management framework can
serve as a partial infrastructure deployment solution -- it can be used to bootstrap
Disnix and deploy container services.

Moreover, it can also deploy multiple instances of container services and used on
any operating system that the Nix process management framework supports,
including conventional Linux distributions and other operating systems, such as
macOS and FreeBSD.

Deploying and exposing the Disnix service with the
Nix process management framework

As explained earlier, to allow Disnix to deploy services to a remote machine, a
machine needs to have Disnix installed (and run the Disnix service for a multi-user
installation), and be remotely connectible, e.g. through SSH.

I have packaged all required services as constructor functions for the Nix process
management framework.

The following process model captures the configuration of a basic multi-user Disnix
installation:

{ pkgs ? import <nixpkgs> { inherit system; }

, system ? builtins.currentSystem

, stateDir ? "/var"

, runtimeDir ? "${stateDir}/run"

, logDir ? "${stateDir}/log"

, spoolDir ? "${stateDir}/spool"

, cacheDir ? "${stateDir}/cache"

, tmpDir ? (if stateDir == "/var" then "/tmp" else "${stateDir}/tmp")

https://sandervanderburg.blogspot.com/2020/02/a-declarative-process-manager-agnostic.html

, forceDisableUserChange ? false

, processManager

}:

let

 ids = if builtins.pathExists ./ids-bare.nix then (import ./ids-bare

 constructors = import ../../services-agnostic/constructors.nix {

 inherit pkgs stateDir runtimeDir logDir tmpDir cacheDir spoolDir

 };

in

rec {

 sshd = {

 pkg = constructors.sshd {

 extraSSHDConfig = ''

 UsePAM yes

 '';

 };

 requiresUniqueIdsFor = ["uids" "gids"];

 };

 dbus-daemon = {

 pkg = constructors.dbus-daemon {

 services = [disnix-service];

 };

 requiresUniqueIdsFor = ["uids" "gids"];

 };

 disnix-service = {

 pkg = constructors.disnix-service {

 inherit dbus-daemon;

 };

 requiresUniqueIdsFor = ["gids"];

 };

}

The above processes model (processes.nix) captures three process instances:

sshd is the OpenSSH server that makes it possible to remotely connect to the
machine by using the SSH protocol.
dbus-daemon runs a D-Bus system daemon, that is a requirement for the
Disnix service. The disnix-service is propagated as a parameter, so that its
service directory gets added to the D-Bus system daemon configuration.
disnix-service is a service that executes deployment operations on behalf of
an authorized unprivileged user. The disnix-service has a dependency on the
dbus-service making sure that the latter gets activated first.

We can deploy the above configuration on a machine that has the Nix process
management framework already installed.

For example, to deploy the configuration on a machine that uses supervisord, we
can run:

$ nixproc-supervisord-switch processes.nix

Resulting in a system that consists of the following running processes:

$ supervisorctl

dbus-daemon RUNNING pid 2374, uptime 0:00:34

disnix-service RUNNING pid 2397, uptime 0:00:33

sshd RUNNING pid 2375, uptime 0:00:34

As may be noticed, the above supervised services correspond to the processes in the
processes model.

On the coordinator machine, we can write a bootstrap infrastructure model (infra-
bootstrap.nix) that only contains connectivity settings:

{

 test1.properties.hostname = "192.168.2.1";

}

and use the bootstrap model to capture the full infrastructure model of the system:

$ disnix-capture-infra infra-bootstrap.nix

resulting in the following configuration:

{

 "test1" = {

 properties = {

 "hostname" = "192.168.2.1";

 "system" = "x86_64-linux";

 };

 containers = {

 echo = {

 };

 fileset = {

 };

 process = {

 };

 supervisord-program = {

 "supervisordTargetDir" = "/etc/supervisor/conf.d";

 };

 wrapper = {

 };

 };

 "system" = "x86_64-linux";

 };

}

Despite the fact that we have not configured any containers explicitly, the above
configuration (infrastructure.nix) already exposes a number of container services:

The echo, fileset and process container services are built-in container
providers that any Dysnomia installation includes.

The process container can be used to automatically deploy services that
daemonize. Services that daemonize themselves do not require the presence
of any external service.
The supervisord-program container refers to the process supervisor that
manages the services deployed by the Nix process management framework. It
can also be used as a container for processes deployed by Disnix.

With the above infrastructure model, we can deploy any system that depends on the
above container services, such as the trivial Disnix proxy example:

{ system, distribution, invDistribution, pkgs

, stateDir ? "/var"

, runtimeDir ? "${stateDir}/run"

, logDir ? "${stateDir}/log"

, cacheDir ? "${stateDir}/cache"

, tmpDir ? (if stateDir == "/var" then "/tmp" else "${stateDir}/tmp")

, forceDisableUserChange ? false

, processManager ? "supervisord"

, nix-processmgmt ? ../../../nix-processmgmt

}:

let

 customPkgs = import ../top-level/all-packages.nix {

 inherit system pkgs stateDir logDir runtimeDir tmpDir forceDisabl

 };

 ids = if builtins.pathExists ./ids.nix then (import ./ids.nix).ids

 processType = import "${nix-processmgmt}/nixproc/derive-dysnomia-pr

 inherit processManager;

 };

in

https://github.com/svanderburg/disnix-proxy-example

rec {

 hello_world_server = rec {

 name = "hello_world_server";

 port = ids.ports.hello_world_server or 0;

 pkg = customPkgs.hello_world_server { inherit port; };

 type = processType;

 requiresUniqueIdsFor = ["ports"];

 };

 hello_world_client = {

 name = "hello_world_client";

 pkg = customPkgs.hello_world_client;

 dependsOn = {

 inherit hello_world_server;

 };

 type = "package";

 };

}

The services model shown above (services.nix) captures two services:

The hello_world_server service is a simple service that listens on a TCP port
for a "hello" message and responds with a "Hello world!" message.
The hello_world_client service is a package providing a client executable that
automatically connects to the hello_world_server.

With the following distribution model (distribution.nix), we can map all the services
to our deployment machine (that runs the Disnix service managed by the Nix
process management framework):

{infrastructure}:

{

 hello_world_client = [infrastructure.test1];

 hello_world_server = [infrastructure.test1];

}

and deploy the system by running the following command:

$ disnix-env -s services-without-proxy.nix \

 -i infrastructure.nix \

 -d distribution.nix \

 --extra-params '{ processManager = "supervisord"; }'

The last parameter: --extra-params configures the services model (that indirectly

invokes the createManagedProcess abstraction function from the Nix process
management framework) in such a way that supervisord configuration files are
generated.

(As a sidenote: without the --extra-params parameter, the process instances will be
built for the disnix process manager generating configuration files that can be
deployed to the process container, expecting programs to daemonize on their own
and leave a PID file behind with the daemon's process ID. Although this approach
is convenient for experiments, because no external service is required, it is not as
reliable as managing supervised processes).

The result of the above deployment operation is that the hello-world-service service
is deployed as a service that is also managed by supervisord:

$ supervisorctl

dbus-daemon RUNNING pid 2374, uptime 0:09:39

disnix-service RUNNING pid 2397, uptime 0:09:38

hello-world-server RUNNING pid 2574, uptime 0:00:06

sshd RUNNING pid 2375, uptime 0:09:39

and we can use the hello-world-client executable on the target machine to connect
to the service:

$ /nix/var/nix/profiles/disnix/default/bin/hello-world-client

Trying 192.168.2.1...

Connected to 192.168.2.1.

Escape character is '^]'.

hello

Hello world!

Deploying container providers and exposing them

With Disnix, it is also possible to deploy systems that are composed of different
kinds of components, such as web services and databases.

For example, the Java variant of the ridiculous Staff Tracker example consists of the
following services:

https://sandervanderburg.blogspot.com/2020/06/using-disnix-as-simple-and-minimalistic.html
https://github.com/svanderburg/disnix-stafftracker-java-example

The services in the diagram above have the following purpose:

The StaffTracker service is the front-end web application that shows an
overview of staff members and their locations.
The StaffService service is web service with a SOAP interface that provides
read and write access to the staff records. The staff records are stored in the
staff database.
The RoomService service provides read access to the rooms records, that are
stored in a separate rooms database.
The ZipcodeService service provides read access to zip codes, that are stored
in a separate zipcodes database.
The GeolocationService infers the location of a staff member from its IP
address using the GeoIP service.

To deploy the system shown above, we need a target machine that provides Apache
Tomcat (for managing the web application front-end and web services) and MySQL
(for managing the databases) as container provider services:

{ pkgs ? import <nixpkgs> { inherit system; }

, system ? builtins.currentSystem

, stateDir ? "/var"

, runtimeDir ? "${stateDir}/run"

, logDir ? "${stateDir}/log"

, spoolDir ? "${stateDir}/spool"

, cacheDir ? "${stateDir}/cache"

, tmpDir ? (if stateDir == "/var" then "/tmp" else "${stateDir}/tmp")

, forceDisableUserChange ? false

, processManager

}:

let

 ids = if builtins.pathExists ./ids-tomcat-mysql.nix then (import ./

 constructors = import ../../services-agnostic/constructors.nix {

 inherit pkgs stateDir runtimeDir logDir tmpDir cacheDir spoolDir

 };

 containerProviderConstructors = import ../../service-containers-agn

 inherit pkgs stateDir runtimeDir logDir tmpDir cacheDir spoolDir

https://1.bp.blogspot.com/-kmtmJ0XHegU/YEdXv_We9UI/AAAAAAAALQc/tHnoCGAZmN0xqvlugFlCPS_g6RSqahCngCLcBGAsYHQ/s1480/services.png

 };

in

rec {

 sshd = {

 pkg = constructors.sshd {

 extraSSHDConfig = ''

 UsePAM yes

 '';

 };

 requiresUniqueIdsFor = ["uids" "gids"];

 };

 dbus-daemon = {

 pkg = constructors.dbus-daemon {

 services = [disnix-service];

 };

 requiresUniqueIdsFor = ["uids" "gids"];

 };

 tomcat = containerProviderConstructors.simpleAppservingTomcat {

 commonLibs = ["${pkgs.mysql_jdbc}/share/java/mysql-connector-jav

 webapps = [

 pkgs.tomcat9.webapps # Include the Tomcat example and managemen

];

 properties.requiresUniqueIdsFor = ["uids" "gids"];

 };

 mysql = containerProviderConstructors.mysql {

 properties.requiresUniqueIdsFor = ["uids" "gids"];

 };

 disnix-service = {

 pkg = constructors.disnix-service {

 inherit dbus-daemon;

 containerProviders = [tomcat mysql];

 };

 requiresUniqueIdsFor = ["gids"];

 };

}

The process model above is an extension of the previous processes model, adding
two container provider services:

tomcat is the Apache Tomcat server. The constructor function:
simpleAppServingTomcat composes a configuration for a supported process
manager, such as supervisord.

Moreover, it bundles a Dysnomia container configuration file, and a

Dysnomia module: tomcat-webapplication that can be used to manage the
life-cycles of Java web applications embedded in the servlet container.
mysql is the MySQL DBMS server. The constructor function also creates a
process manager configuration file, and bundles a Dysnomia container
configuration file and module that manages the life-cycles of databases.
The container services above are propagated as containerProviders to the
disnix-service. This function parameter is used to update the search paths for
container configuration and modules, so that services can be deployed to
these containers by Disnix.

After deploying the above processes model, we should see the following
infrastructure model after capturing it:

$ disnix-capture-infra infra-bootstrap.nix

{

 "test1" = {

 properties = {

 "hostname" = "192.168.2.1";

 "system" = "x86_64-linux";

 };

 containers = {

 echo = {

 };

 fileset = {

 };

 process = {

 };

 supervisord-program = {

 "supervisordTargetDir" = "/etc/supervisor/conf.d";

 };

 wrapper = {

 };

 tomcat-webapplication = {

 "tomcatPort" = "8080";

 "catalinaBaseDir" = "/var/tomcat";

 };

 mysql-database = {

 "mysqlPort" = "3306";

 "mysqlUsername" = "root";

 "mysqlPassword" = "";

 "mysqlSocket" = "/var/run/mysqld/mysqld.sock";

 };

 };

 "system" = "x86_64-linux";

 };

}

As may be observed, the tomcat-webapplication and mysql-database containers
(with their relevant configuration properties) were added to the infrastructure
model.

With the following command we can deploy the example system's services to the
containers in the network:

$ disnix-env -s services.nix -i infrastructure.nix -d distribution.ni

resulting in a fully functional system:

Deploying multiple container provider instances

As explained in the introduction, a limitation of the NixOS module system is that it
is only possible to construct one instance of a service on a machine.

Process instances in a processes model deployed by the Nix process management
framework as well as services in a Disnix services model are instantiated from

https://1.bp.blogspot.com/-u4wAHdKCTvs/YEdrEKpOXzI/AAAAAAAALQo/2hFB_2806rcXE1AAzp2C0hvgzVR4UH-3QCLcBGAsYHQ/s816/stafftracker.png

functions that make it possible to deploy multiple instances of the same service to
the same machine, by making conflicting properties configurable.

The following processes model was modified from the previous example to deploy
two MySQL servers and two Apache Tomcat servers to the same machine:

{ pkgs ? import <nixpkgs> { inherit system; }

, system ? builtins.currentSystem

, stateDir ? "/var"

, runtimeDir ? "${stateDir}/run"

, logDir ? "${stateDir}/log"

, spoolDir ? "${stateDir}/spool"

, cacheDir ? "${stateDir}/cache"

, tmpDir ? (if stateDir == "/var" then "/tmp" else "${stateDir}/tmp")

, forceDisableUserChange ? false

, processManager

}:

let

 ids = if builtins.pathExists ./ids-tomcat-mysql-multi-instance.nix

 constructors = import ../../services-agnostic/constructors.nix {

 inherit pkgs stateDir runtimeDir logDir tmpDir cacheDir spoolDir

 };

 containerProviderConstructors = import ../../service-containers-agn

 inherit pkgs stateDir runtimeDir logDir tmpDir cacheDir spoolDir

 };

in

rec {

 sshd = {

 pkg = constructors.sshd {

 extraSSHDConfig = ''

 UsePAM yes

 '';

 };

 requiresUniqueIdsFor = ["uids" "gids"];

 };

 dbus-daemon = {

 pkg = constructors.dbus-daemon {

 services = [disnix-service];

 };

 requiresUniqueIdsFor = ["uids" "gids"];

 };

 tomcat-primary = containerProviderConstructors.simpleAppservingTomc

 instanceSuffix = "-primary";

 httpPort = 8080;

 httpsPort = 8443;

 serverPort = 8005;

 ajpPort = 8009;

 commonLibs = ["${pkgs.mysql_jdbc}/share/java/mysql-connector-jav

 webapps = [

 pkgs.tomcat9.webapps # Include the Tomcat example and managemen

];

 properties.requiresUniqueIdsFor = ["uids" "gids"];

 };

 tomcat-secondary = containerProviderConstructors.simpleAppservingTo

 instanceSuffix = "-secondary";

 httpPort = 8081;

 httpsPort = 8444;

 serverPort = 8006;

 ajpPort = 8010;

 commonLibs = ["${pkgs.mysql_jdbc}/share/java/mysql-connector-jav

 webapps = [

 pkgs.tomcat9.webapps # Include the Tomcat example and managemen

];

 properties.requiresUniqueIdsFor = ["uids" "gids"];

 };

 mysql-primary = containerProviderConstructors.mysql {

 instanceSuffix = "-primary";

 port = 3306;

 properties.requiresUniqueIdsFor = ["uids" "gids"];

 };

 mysql-secondary = containerProviderConstructors.mysql {

 instanceSuffix = "-secondary";

 port = 3307;

 properties.requiresUniqueIdsFor = ["uids" "gids"];

 };

 disnix-service = {

 pkg = constructors.disnix-service {

 inherit dbus-daemon;

 containerProviders = [tomcat-primary tomcat-secondary mysql-pr

 };

 requiresUniqueIdsFor = ["gids"];

 };

}

In the above processes model, we made the following changes:

We have configured two Apache Tomcat instances: tomcat-primary and
tomcat-secondary. Both instances can co-exist because they have been
configured in such a way that they listen to unique TCP ports and have a
unique instance name composed from the instanceSuffix.
We have configured two MySQL instances: mysql-primary and mysql-
secondary. Similar to Apache Tomcat, they can both co-exist because they

listen to unique TCP ports (e.g. 3306 and 3307) and have a unique instance
name.
Both the primary and secondary instances of the above services are
propagated to the disnix-service (with the containerProviders parameter)
making it possible for a client to discover them.

After deploying the above processes model, we can run the following command to
discover the machine's configuration:

$ disnix-capture-infra infra-bootstrap.nix

{

 "test1" = {

 properties = {

 "hostname" = "192.168.2.1";

 "system" = "x86_64-linux";

 };

 containers = {

 echo = {

 };

 fileset = {

 };

 process = {

 };

 supervisord-program = {

 "supervisordTargetDir" = "/etc/supervisor/conf.d";

 };

 wrapper = {

 };

 tomcat-webapplication-primary = {

 "tomcatPort" = "8080";

 "catalinaBaseDir" = "/var/tomcat-primary";

 };

 tomcat-webapplication-secondary = {

 "tomcatPort" = "8081";

 "catalinaBaseDir" = "/var/tomcat-secondary";

 };

 mysql-database-primary = {

 "mysqlPort" = "3306";

 "mysqlUsername" = "root";

 "mysqlPassword" = "";

 "mysqlSocket" = "/var/run/mysqld-primary/mysqld.sock";

 };

 mysql-database-secondary = {

 "mysqlPort" = "3307";

 "mysqlUsername" = "root";

 "mysqlPassword" = "";

 "mysqlSocket" = "/var/run/mysqld-secondary/mysqld.sock";

 };

 };

 "system" = "x86_64-linux";

 };

}

As may be observed, the infrastructure model contains two Apache Tomcat
instances and two MySQL instances.

With the following distribution model (distribution.nix), we can divide each
database and web application over the two container instances:

{infrastructure}:

{

 GeolocationService = {

 targets = [

 { target = infrastructure.test1;

 container = "tomcat-webapplication-primary";

 }

];

 };

 RoomService = {

 targets = [

 { target = infrastructure.test1;

 container = "tomcat-webapplication-secondary";

 }

];

 };

 StaffService = {

 targets = [

 { target = infrastructure.test1;

 container = "tomcat-webapplication-primary";

 }

];

 };

 StaffTracker = {

 targets = [

 { target = infrastructure.test1;

 container = "tomcat-webapplication-secondary";

 }

];

 };

 ZipcodeService = {

 targets = [

 { target = infrastructure.test1;

 container = "tomcat-webapplication-primary";

 }

];

 };

 rooms = {

 targets = [

 { target = infrastructure.test1;

 container = "mysql-database-primary";

 }

];

 };

 staff = {

 targets = [

 { target = infrastructure.test1;

 container = "mysql-database-secondary";

 }

];

 };

 zipcodes = {

 targets = [

 { target = infrastructure.test1;

 container = "mysql-database-primary";

 }

];

 };

}

Compared to the previous distribution model, the above model uses a more verbose
notation for mapping services.

As explained in an earlier blog post, in deployments in which only a single
container is deployed, services are automapped to the container that has the same
name as the service's type. When multiple instances exist, we need to manually
specify the container where the service needs to be deployed to.

After deploying the system with the following command:

$ disnix-env -s services.nix -i infrastructure.nix -d distribution.nix

we will get a running system with the following deployment architecture:

Using the Disnix web service for executing remote
deployment operations

https://sandervanderburg.blogspot.com/2016/05/mapping-services-to-containers-with.html
https://1.bp.blogspot.com/-E2zrVnkgfOE/YEiNRpF5EQI/AAAAAAAALQ0/idos0VoauGcOotHe4j_0f7RSF0e6GJztQCLcBGAsYHQ/s1113/multicontainerarch.png

By default, Disnix uses SSH to communicate to target machines in the network.
Disnix has a modular architecture and is also capable of communicating to target
machines by other means, for example via NixOps, the backdoor client, D-Bus, and
directly executing tasks on a local machine.

There is also an external package: DisnixWebService that remotely exposes all
deployment operations from a web service with a SOAP API.

To use the DisnixWebService, we must deploy a Java servlet container (such as
Apache Tomcat) with the DisnixWebService application, configured in such a way
that it can connect to the disnix-service over the D-Bus system bus.

The following processes model is an extension of the non-multi containers Staff
Tracker example, with an Apache Tomcat service that bundles the
DisnixWebService:

{ pkgs ? import <nixpkgs> { inherit system; }

, system ? builtins.currentSystem

, stateDir ? "/var"

, runtimeDir ? "${stateDir}/run"

, logDir ? "${stateDir}/log"

, spoolDir ? "${stateDir}/spool"

, cacheDir ? "${stateDir}/cache"

, tmpDir ? (if stateDir == "/var" then "/tmp" else "${stateDir}/tmp")

, forceDisableUserChange ? false

, processManager

}:

let

 ids = if builtins.pathExists ./ids-tomcat-mysql.nix then (import ./

 constructors = import ../../services-agnostic/constructors.nix {

 inherit pkgs stateDir runtimeDir logDir tmpDir cacheDir spoolDir

 };

 containerProviderConstructors = import ../../service-containers-agn

 inherit pkgs stateDir runtimeDir logDir tmpDir cacheDir spoolDir

 };

in

rec {

 sshd = {

 pkg = constructors.sshd {

 extraSSHDConfig = ''

 UsePAM yes

 '';

 };

 requiresUniqueIdsFor = ["uids" "gids"];

 };

 dbus-daemon = {

 pkg = constructors.dbus-daemon {

 services = [disnix-service];

 };

 requiresUniqueIdsFor = ["uids" "gids"];

 };

 tomcat = containerProviderConstructors.disnixAppservingTomcat {

 commonLibs = ["${pkgs.mysql_jdbc}/share/java/mysql-connector-jav

 webapps = [

 pkgs.tomcat9.webapps # Include the Tomcat example and managemen

];

 enableAJP = true;

 inherit dbus-daemon;

 properties.requiresUniqueIdsFor = ["uids" "gids"];

 };

 apache = {

 pkg = constructors.basicAuthReverseProxyApache {

 dependency = tomcat;

 serverAdmin = "admin@localhost";

 targetProtocol = "ajp";

 portPropertyName = "ajpPort";

 authName = "DisnixWebService";

 authUserFile = pkgs.stdenv.mkDerivation {

 name = "htpasswd";

 buildInputs = [pkgs.apacheHttpd];

 buildCommand = ''

 htpasswd -cb ./htpasswd admin secret

 mv htpasswd $out

 '';

 };

 requireUser = "admin";

 };

 requiresUniqueIdsFor = ["uids" "gids"];

 };

 mysql = containerProviderConstructors.mysql {

 properties.requiresUniqueIdsFor = ["uids" "gids"];

 };

 disnix-service = {

 pkg = constructors.disnix-service {

 inherit dbus-daemon;

 containerProviders = [tomcat mysql];

 authorizedUsers = [tomcat.name];

 dysnomiaProperties = {

 targetEPR = "http://$(hostname)/DisnixWebService/services/Dis

 };

 };

 requiresUniqueIdsFor = ["gids"];

 };

}

The above processes model contains the following changes:

The Apache Tomcat process instance is constructed with the
containerProviderConstructors.disnixAppservingTomcat constructor function
automatically deploying the DisnixWebService and providing the required
configuration settings so that it can communicate with the disnix-service over
the D-Bus system bus.

Because the DisnixWebService requires the presence of the D-Bus system
daemon, it is configured as a dependency for Apache Tomcat ensuring that it
is started before Apache Tomcat.
Connecting to the Apache Tomcat server including the DisnixWebService
requires no authentication. To secure the web applications and the
DisnixWebService, I have configured an apache reverse proxy that forwards
connections to Apache Tomcat using the AJP protocol.

Moreover, the reverse proxy protects incoming requests by using HTTP basic
authentication requiring a username and password.

We can use the following bootstrap infrastructure model to discover the machine's
configuration:

{

 test1.properties.targetEPR = "http://192.168.2.1/DisnixWebService/s

}

The difference between this bootstrap infrastructure model and the previous is that
it uses a different connection property (targetEPR) that refers to the URL of the
DisnixWebService.

By default, Disnix uses the disnix-ssh-client to communicate to target machines. To
use a different client, we must set the following environment variables:

$ export DISNIX_CLIENT_INTERFACE=disnix-soap-client

$ export DISNIX_TARGET_PROPERTY=targetEPR

The above environment variables instruct Disnix to use the disnix-soap-client
executable and the targetEPR property from the infrastructure model as a
connection string.

To authenticate ourselves, we must set the following environment variables with a
username and password:

$ export DISNIX_SOAP_CLIENT_USERNAME=admin

$ export DISNIX_SOAP_CLIENT_PASSWORD=secret

The following command makes it possible to discover the machine's configuration
using the disnix-soap-client and DisnixWebService:

$ disnix-capture-infra infra-bootstrap.nix

{

 "test1" = {

 properties = {

 "hostname" = "192.168.2.1";

 "system" = "x86_64-linux";

 "targetEPR" = "http://192.168.2.1/DisnixWebService/services/Dis

 };

 containers = {

 echo = {

 };

 fileset = {

 };

 process = {

 };

 supervisord-program = {

 "supervisordTargetDir" = "/etc/supervisor/conf.d";

 };

 wrapper = {

 };

 tomcat-webapplication = {

 "tomcatPort" = "8080";

 "catalinaBaseDir" = "/var/tomcat";

 "ajpPort" = "8009";

 };

 mysql-database = {

 "mysqlPort" = "3306";

 "mysqlUsername" = "root";

 "mysqlPassword" = "";

 "mysqlSocket" = "/var/run/mysqld/mysqld.sock";

 };

 };

 "system" = "x86_64-linux";

 }

 ;

}

After capturing the full infrastructure model, we can deploy the system with disnix-
env if desired, using the disnix-soap-client to carry out all necessary remote
deployment operations.

Miscellaneous: using Docker containers as light-
weight virtual machines

As explained earlier in this blog post, the Nix process management framework is
only a partial infrastructure deployment solution -- you still need to somehow
obtain physical or virtual machines with a software distribution running the Nix
package manager.

In a blog post written some time ago, I have explained that Docker containers are
not virtual machines or even light-weight virtual machines.

In my previous blog post, I have shown that we can also deploy mutable Docker
multi-process containers in which process instances can be upgraded without
stopping the container.

The deployment workflow for upgrading mutable containers, is very machine-like -
- NixOS has a similar workflow that consists of updating the machine configuration
(/etc/nixos/configuration.nix) and running a single command-line instruction to
upgrade machine (nixos-rebuild switch).

We can actually start using containers as VMs by adding another ingredient in the
mix -- we can also assign static IP addresses to Docker containers.

With the following Nix expression, we can create a Docker image for a mutable
container, using any of the processes models shown previously as the "machine's
configuration":

let

 pkgs = import <nixpkgs> {};

 createMutableMultiProcessImage = import ../nix-processmgmt/nixproc/

 inherit pkgs;

 };

in

createMutableMultiProcessImage {

 name = "disnix";

 tag = "test";

 contents = [pkgs.mc pkgs.disnix];

 exprFile = ./processes.nix;

 interactive = true;

 manpages = true;

 processManager = "supervisord";

}

The exprFile in the above Nix expression refers to a previously shown processes

https://sandervanderburg.blogspot.com/2020/07/on-using-nix-and-docker-as-deployment.html
https://sandervanderburg.blogspot.com/2021/02/deploying-mutable-multi-process-docker.html
https://stackoverflow.com/questions/27937185/assign-static-ip-to-docker-container

model, and the processManager the desired process manager to use, such as
supervisord.

With the following command, we can build the image with Nix and load it into
Docker:

$ nix-build

$ docker load -i result

With the following command, we can create a network to which our containers
(with IP addresses) should belong:

$ docker network create --subnet=192.168.2.0/8 disnixnetwork

The above command creates a subnet with a prefix: 192.168.2.0 and allocates an 8-
bit block for host IP addresses.

We can create and start a Docker container named: containervm using our
previously built image, and assign it an IP address:

$ docker run --network disnixnetwork --ip 192.168.2.1 \

 --name containervm disnix:test

By default, Disnix uses SSH to connect to remote machines. With the following
commands we can create a public-private key pair and copy the public key to the
container:

$ ssh-keygen -t ed25519 -f id_test -N ""

$ docker exec containervm mkdir -m0700 -p /root/.ssh

$ docker cp id_test.pub containervm:/root/.ssh/authorized_keys

$ docker exec containervm chmod 600 /root/.ssh/authorized_keys

$ docker exec containervm chown root:root /root/.ssh/authorized_keys

On the coordinator machine, that carries out the deployment, we must add the
private key to the SSH agent and configure the disnix-ssh-client to connect to the
disnix-service:

$ ssh-add id_test

$ export DISNIX_REMOTE_CLIENT=disnix-client

By executing all these steps, containervm can be (mostly) used as if it were a virtual

machine, including connecting to it with an IP address over SSH.

Conclusion

In this blog post, I have described how the Nix process management framework can
be used as a partial infrastructure deployment solution for Disnix. It can be used
both for deploying the disnix-service (to facilitate multi-user installations) as well as
deploying container providers: services that manage the life-cycles of services
deployed by Disnix.

Moreover, the Nix process management framework makes it possible to do these
deployments on all kinds of software distributions that can use the Nix package
manager, including NixOS, conventional Linux distributions and other operating
systems, such as macOS and FreeBSD.

If I had developed this solution a couple of years ago, it would probably have saved
me many hours of preparation work for my first demo in my NixCon 2015 talk in
which I wanted demonstrate that it is possible to deploy services to a heterogeneous
network that consists of a NixOS, Ubuntu and Windows machine. Back then, I had
to do all the infrastructure deployment tasks manually.

I also have to admit (but this statement is mostly based on my personal preferences,
not facts), is that I find the functional style that the framework uses is IMO far more
intuitive than the NixOS module system for certain service configuration aspects,
especially for configuring container services and exposing them with Disnix and
Dysnomia:

Because every process instance is constructed from a constructor function
that makes all instance parameters explicit, you are guarded against common
configuration errors such as undeclared dependencies.

For example, the DisnixWebService-enabled Apache Tomcat service requires
access to the dbus-service providing the system bus. Not having this service
in the processes model, causes a missing function parameter error.
Function parameters in the processes model make it more clear that a process
depends on another process and what that relationship may be. For example,
with the containerProviders parameter it becomes IMO really clear that the
disnix-service uses them as potential deployment targets for services
deployed by Disnix.

In comparison, the implementations of the Disnix and Dysnomia NixOS
modules are far more complicated and monolithic -- the Dysnomia module
has to figure for all potential container services deployed as part of a NixOS

https://sandervanderburg.blogspot.com/2015/11/deploying-services-to-heterogeneous.html

configuration, their properties, convert them to Dysnomia configuration files,
and configure the systemd configuration for the disnix-service for proper
activation ordering.

The wants parameter (used for activation ordering) is just a list of strings, not
knowing whether it contains valid references to services that have been
deployed already.

Availability

The constructor functions for the services as well as the deployment examples
described in this blog post can be found in the Nix process management services
repository.

Future work

Slowly more and more of my personal use cases are getting supported by the Nix
process management framework.

Moreover, the services repository is steadily growing. To ensure that all the services
that I have packaged so far do not break, I really need to focus my work on a
service test solution.

https://github.com/svanderburg/nix-processmgmt-services

