
Wednesday, February 16, 2011

Disnix: A toolset for distributed deployment

On February the 14th, I have released Disnix 0.2. It seems that I have
picked a nice date for it, just like the release date of the of Disnix 0.1,
which was released on April the 1st 2010 (and that's no joke). Since I
haven't written any blog post about Disnix yet, I'll give some info here.

Disnix is a distributed deployment extension for the Nix package manager.
Whereas Nix manages packages and dependencies residing on the same
system in the Nix store (which we call intra-dependencies later on),
Disnix manages distributable components (or services). Services have
intra-dependencies on components residing on the same system, but also
dependencies on other services, which may be located on a different
machine in the network (which we call inter-dependencies later on).
Disnix extends the Nix approach and offers various features to deploy to
service-oriented systems, including the management of inter-dependencies.

The figure above shows how Disnix works in a nutshell. In the center the
disnix-env command-line tool is shown, which performs the complete
deployment process of a service-oriented system. On the left, various
models are shown. The services model captures all the service
(distributable components) of which a system consists, their types and
inter-dependencies. This model includes a reference to all-packages.nix, a
Nix expression capturing intra-dependency compositions. The
infrastructure model captures the available machines in the network and
their relevant properties/capabilities. The distribution model maps

https://1.bp.blogspot.com/-rSXKu4gGOJU/TVr7AKZc0oI/AAAAAAAAAR4/xV5M43YMD4Y/s1600/model.png

QUESTION so there is a definition here (intra-dependency) and another definition (service) that is so short (distributable components) that it is tempting to use it as a synonym at times.
How to capture this with ontological / semantic tools?

TODO this should (also) be captured in a figure. in fact, this should have been the priority...

TODO make it a list or something that has a "breezier" structure

services defined in the services model to machines defined in the
infrastructure model. On the right, a network of machines is shown, which
have all have the DisnixService installed providing remote access to
deployment operations.

By writing instances of the models mentioned earlier and by running:

$ disnix-env -s services.nix -i infrastructure.nix \

 -d distribution.nix

The system is built from source-code including all required intra-
dependencies. Then the services and intra-dependencies are efficiently
transferred to the target machines in the network. Finally, the services are
activated in the right order derived from the inter-dependency graph.

By adapting the models and running disnix-env again, an upgrade is
performed instead of a full installation. In this case only components which
have changed are rebuilt and transferred to the target machines in the
network. Moreover, only obsolete services are deactivated and new
services are activated.

Similar to writing ordinary Nix expressions for each package, you also
write Disnix expressions for each service describing how it can be built
from source and its dependencies.

{stdenv, StaffService}:

{staff}:

let

 jdbcURL = "jdbc:mysql://"+

 staff.target.hostname+":"+

 toString (staff.target.mysqlPort)+"/"+

 staff.name+"?autoReconnect=true";

 contextXML = ''

 <Context>

 <Resource name="jdbc/StaffDB" auth="Container"

 type="javax.sql.DataSource"

 maxActivate="100" maxIdle="30" maxWait="10000"

 username="${staff.target.mysqlUsername}"

 password="${staff.target.mysqlPassword}"

 driverClassName="com.mysql.jdbc.Driver"

 url="${jdbcURL}" />

 </Context>

 '';

QUESTION how is the inter-dependency graph constructed?
I think there is a lot of stuff left out here that are only implied; eg the models (Nix expressions) paint a picture, the distribution model provides a map, and all this info is used to create a DAG that will "just" has to be traversed.

NOTE / WARNING would have liked an idempotent operation better with an explicit upgrade switch; this way one has to keep in mind what the state was when disnix- env was run the last time - or risk service disruption

intra-dependencies

INTER-dependencies

QUESTION where is 'target' coming from?
yes, from here but is this just a vague example, or there should be a 'target' attribute somewhere?

QUESTION what is the name of this file AND which model is this?

and the filename is probably something like
staff-service.nix

in

stdenv.mkDerivation {

 name = "StaffService";

 buildCommand = ''

 ensureDir $out/conf/Catalina

 cat > $out/conf/Catalina/StaffService.xml <<EOF

 ${contextXML}

 EOF

 ln -sf ${StaffService}/webapps $out/webapps

 '';

}

The code fragement above shows a Disnix expression for the StaffTracker
example included in the Disnix repository. The main difference between
this expression and an ordinary Nix expression is that it has two function
headers which takes intra-dependencies and inter-dependencies
respectively to configure the component. The inter-dependency arguments
are used in this expression to generate a so called context XML file, which
Apache Tomcat uses to configure resources such as JDBC connections,
containing a URL, port number and authentication credentials for a
MySQL database residing on a different machine in the network. For other
types of components a different configuration file has to be created.

Moreover, you also need to compose a Disnix expression. A Disnix
expression must first be composed locally by calling the function with the
right intra-dependency arguments. This is done in a similar way as ordinary
Nix expressions. Later, the same function is called with the right inter-
dependency arguments as well.

{distribution, system, pkgs}:

let customPkgs = import ../top-level/all-packages.nix {

 inherit system pkgs;

};

in

rec {

Databases

 staff = {

 name = "staff";

 pkg = customPkgs.staff;

 dependsOn = {};

 type = "mysql-database";

 };

 ...

Web services

QUESTION I understand what this does but unfamiliar with this notation

This is the service model (I think) as it calls out to all-packages.nix

 StaffService = {

 name = "StaffService";

 pkg = customPkgs.StaffServiceWrapper;

 dependsOn = {

 inherit staff;

 };

 type = "tomcat-webapplication";

 };

 ...

Web applications

 StaffTracker = {

 name = "StaffTracker";

 pkg = customPkgs.StaffTracker;

 dependsOn = {

 inherit GeolocationService RoomService;

 inherit StaffService ZipcodeService;

 };

 type = "tomcat-webapplication";

 };

 ...

}

The above expression shows the services model, used to capture of which
distributable components a system consists. Basically, this model is a
function taking three arguments: the distribution model (shown later), a
collection of Nixpkgs and a system identifier indicating the architecture of
a target host. The function returns an attribute set in which each attribute
represents a service. For each service various properties are defined, such
as a name, a pkg attribute referring to a function which creates an intra-
dependency composition of a service (defined in an external file not shown
here), dependsOn composing the inter-dependencies and a type, which is
used for activation and deactivation of the service.

{

 test1 = {

 hostname = "test1.example.org";

 tomcatPort = 8080;

 system = "i686-linux";

 };

 test2 = {

 hostname = "test2.example.org";

 tomcatPort = 8080;

 mysqlPort = 3306;

 mysqlUsername = "root";

 mysqlPassword = "secret";

 system = "i686-linux";

 };

}

The expression shown above is an infrastructure model, which captures
machines in the network and their relevant properties/capabilities. This
expression is an attribute set in which each attribute represents a machine
in the network. Some properties are mandatory, such as the hostname
indicating how the Disnix service can be reached. The system property
denotes the system architecture so that a service is built for that particular
platform. Other properties can be freely chosen and are used for
activation/deactivation of a component.

{infrastructure}:

{

 GeolocationService = [infrastructure.test1];

 RoomService = [infrastructure.test2];

 StaffService = [infrastructure.test1];

 StaffTracker = [infrastructure.test1 infrastructure.test2];

 ZipcodeService = [infrastructure.test1];

 rooms = [infrastructure.test2];

 staff = [infrastructure.test2];

 zipcodes = [infrastructure.test2];

}

The final expression shown above is the distribution model, mapping
services to machines in the network. This expression is a function taking
the infrastructure model as parameter. The body is an attribute set in which
every attribute representing a service refers to a list of machines in the
network. It also allows you to map a service to multiple machines for e.g.
load balancing.

The models shown earlier are used by Disnix to perform the complete
deployment process of a service-oriented system, i.e. building services,
transferring services and the activation of services. Because Disnix uses the
purely functional properties of Nix, this process is reliable and efficient. If
a system is upgraded, no components are removed and overwritten, since
everything is stored in isolation in the Nix store. So while upgrading, we
can still keep the current system intact. Only during the transition phase in
which services are deactivated and activated the system is inconsistent, but
Disnix keeps this time window as small as possible. Moreover, a proxy can

be used during this phase to queue connections, which makes the upgrade
process truly atomic.

Although Disnix supports the deployment of a service-oriented system,
some additional extensions have been developed to make deployment more
convenient:

DisnixWebService. By default Disnix uses a SSH connection to
connect to remote machines in the network. This extension provides
a SOAP interface and disnix-soap-client to perform deployment
through the SOAP protocol.
DisnixOS. Disnix manages the services of which a system is
composed, but not the system configurations of the underlying
infrastructure. This extension provides additional infrastructure
management features to Disnix based on the techniques described in
the blog post titled: Using NixOS for declarative deployment and
testing. By using this extension you can automatically deploy a
network of NixOS configurations next to the services through
Disnix. Moreover, you can also use this extension to generate a
network of virtual machines and automatically deploy the system in
the virtual network. A screenshot is shown above, which runs the
StaffTracker example in a network of three virtual machines.
Dynamic Disnix. Disnix requires developers or system
administrators to manually write an infrastructure model and a
distribution model. In a network in which events occur, such as a
machine which crashes or a new machine with new system resource
is added, this introduces a large degree of inflexibility. The Dynamic
Disnix toolset offers a discovery service, which dynamically

https://4.bp.blogspot.com/-tNooYF8M67w/TVvJu7jz32I/AAAAAAAAASI/wCbnVwFKmZc/s1600/vms.png
http://sandervanderburg.blogspot.com/2011/02/using-nixos-for-declarative-deployment.html

discovers the machines in the network and their relevant
properties/capabilities. Moreover, it also includes a distribution
model generator, which uses a custom defined policy and a collection
of distribution algorithms to dynamically distribute services to
machines, based on non-functional properties defined in the services
and infrastructure models.
The Dynamic Disnix extension is still under heavy development and
not released as part of Disnix 0.2. It will become part of the next
Disnix release.

Disnix, the extensions and some examples can be obtained from the Disnix
web page: http://nixos.org/disnix. Disnix is also described in several
academic papers. The paper: 'Disnix: A toolset for distributed deployment'
describes the architecture of the Disnix toolset. This paper is however
somewhat outdated, as there are some minor changes in the current
implementation. The paper: 'Automated Deployment of a Heterogeneous
Service-Oriented System' describes the 0.1 implementation, which we have
used for a case study at Philips Research. The publications and presentation
slides can be obtained from the publications and talks sections of my
homepage. Moreover, there are some earlier publications about Disnix
available as well. In a next blog post, I will explain more about the
development process and development choices of Disnix.

http://nixos.org/disnix
http://www.st.ewi.tudelft.nl/~sander/index.php/publications
http://www.st.ewi.tudelft.nl/~sander/index.php/talks

